Quantum Kinetic Theory for Artificial Atoms

Michael Bonitz and Karsten Balzer

Institut für Theoretische Physik und Astrophysik
Christian-Albrechts-Universität zu Kiel, Germany

Solvay Workshop for Radu Balescu, Brussels, March 6 2008
Carrier-carrier scattering and optical dephasing in highly excited semiconductors

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger,* and S. W. Koch
Optical Sciences Center and Physics Department, University of Arizona, Tucson, Arizona 85721
(Received 3 June 1991; revised manuscript received 3 September 1991)

A quantitative analysis of carrier-carrier scattering and optical dephasing in semiconductors is presented and results are given for quasiequilibrium situations and for the relaxation of a kinetic hole in a quasithermal carrier distribution. The calculations involve direct numerical integration of the Boltzmann equation for carrier-carrier scattering in the Born approximation. The screening of the Coulomb interaction is treated consistently in the fully dynamical random-phase approximation. Carrier relaxation rates are extracted from the Boltzmann-equation solution and a quantitative test of the relaxation-time approximation for situations near thermal quasiequilibrium is performed. The parametric dependence of carrier-collision rates and dephasing on plasma density, temperature, and electron and hole masses is discussed and analyzed in terms of phase-space blocking and screening.

Lenard-Balescu collision integral, Phys. of Fluids 3, 52 (1960)

dynamically screened Coulomb potential

\[W(q, \omega) = \frac{V(q)}{1 - V(q) P(q, \omega)} = V(q) \epsilon^{-1}(q, \omega) \]

unscreened potential \[V(q) = \frac{4 \pi e^2}{Vq^2} \]

\[P(q, \omega) = \lim_{\delta \to 0} 2 \sum_{\alpha, k} \frac{f_\alpha(k) - f_\alpha(|q + k|)}{\epsilon_\alpha(k) - \epsilon_\alpha(|q + k|) + i\hbar \omega + i\delta} \]
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
- Equations of motion for the NEGF

Numerical Results. Applications
- Homogenous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Outline

Introduction

Artificial atoms
 Femtosecond relaxation processes
 Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
 Second quantization
 Definition of Nonequilibrium Green’s functions (NEGFs)
 Equations of motion for the NEGF

Numerical Results. Applications
 Homogenous Coulomb systems. Plasmas
 Dynamics of charged particles in a trap

Conclusions
Artificial Atoms

Simulation: \(N = 2, 3, \ldots, 6 \) fermions in a 2D parabolical trap.
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
- Equations of motion for the NEGF

Numerical Results. Applications
- Homogenous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Femtosecond relaxation processes

- **Femtosecond laser excitation of matter**
 - coherent semiconductor optics
 - time resolved relaxation dynamics of solids
 - fs dynamics of atoms and molecules

- **Interaction of high intensity lasers, free electron lasers with matter**
 - strong nonlinear excitation
 - correlation effects on fs and sub-fs time scale

- **Need: Nonequilibrium many-body theory**
 ⇒ selfconsistent treatment of correlations, quantum and spin effects
 Neccesary to go beyond standard Boltzmann kinetic equations
Outline

Introduction
 Artificial atoms
 Femtosecond relaxation processes
 Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
 Second quantization
 Definition of Nonequilibrium Green’s functions (NEGFs)
 Equations of motion for the NEGF

Numerical Results. Applications
 Homogeneous Coulomb systems. Plasmas
 Dynamics of charged particles in a trap

Conclusions
Carrier-carrier scattering and optical dephasing in highly excited semiconductors

Optical Sciences Center and Physics Department, University of Arizona, Tucson, Arizona 85721

(Received 3 June 1991; revised manuscript received 3 September 1991)

A quantitative analysis of carrier-carrier scattering and optical dephasing in semiconductors is presented and results are given for quasiequilibrium situations and for the relaxation of a kinetic hole in a quasithermal carrier distribution. The calculations involve direct numerical integration of the Boltzmann equation for carrier-carrier scattering in the Born approximation. The screening of the Coulomb interaction is treated consistently in the fully dynamical random-phase approximation. Carrier relaxation rates are extracted from the Boltzmann-equation solution and a quantitative test of the relaxation-time approximation for situations near thermal quasiequilibrium is performed. The parametric dependence of carrier-collision rates and dephasing on plasma density, temperature, and electron and hole masses is discussed and analyzed in terms of phase-space blocking and screening.

screened Coulomb potential

\[W(q, \omega) = \frac{V(q)}{1 - V(q) P(q, \omega)} = V(q) \epsilon^{-1}(q, \omega) \]

unscreened potential \[V(q) = \frac{4\pi e^2}{V q^2} \]

\[P(q, \omega) = \lim_{\delta \to 0} \sum_{\alpha, k} \frac{f_\alpha(k) - f_\alpha(|q + k|)}{\epsilon_\alpha(k) - \epsilon_\alpha(|q + k|) + i\delta} \]
Limitations of Boltzmann-type kinetic equations

\[
\left\{ \frac{\partial}{\partial t} + \frac{\partial E}{\partial p} \frac{\partial}{\partial R} - \frac{\partial E}{\partial R} \frac{\partial}{\partial p} \right\} f(p, R, t) = I(p, R, t) \tag{1}
\]

\[I(p_1, t) = \frac{2}{\hbar} \int \frac{dp_2}{(2\pi\hbar)^3} \frac{d\tilde{p}_1}{(2\pi\hbar)^3} \frac{d\tilde{p}_2}{(2\pi\hbar)^3} \left| \frac{V(p_1 - \tilde{p}_1)}{e^{RPA}(p_1 - \tilde{p}_1, E(p_1) - E(\tilde{p}_1))} \right|^2 \]

\[\times (2\pi\hbar)^3 \delta(p_1 + p_2 - \tilde{p}_1 - \tilde{p}_2) \cdot 2\pi \delta(E_1 + E_2 - \tilde{E}_1 - \tilde{E}_2) \times \left\{ \tilde{f}_1 \tilde{f}_2 (1 \pm f_1)(1 \pm f_2) - f_1 f_2 (1 \pm \tilde{f}_1)(1 \pm \tilde{f}_2) \right\} |t|
\]

with quasiparticle energy \(E_i = E(p_i), \tilde{E}_i = E(\tilde{p}_i), f_i = f(p_i), \tilde{f}_i = f(\tilde{p}_i) \)

Example: Quantum Lenard-Balescu collision integral (Coulomb scattering)

Properties of Equation (1):

1. Conservation of kinetic energy, \(\frac{d}{dt} \langle E \rangle(t) = 0 \)
2. Equilibrium solution: \(f(p, t) \rightarrow \) Bose/Fermi/Maxwell distribution \(\rightarrow \) thermodynamic and transport properties of ideal gas
3. Eq. (1) limited to times larger than correlation time, \(t \gg \tau_{corr} \)

Properties (1)–(3) in conflict with present goal \(\Rightarrow \) Generalizations necessary
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
- Equations of motion for the NEGF

Numerical Results. Applications
- Homogenous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Hamiltonian in second quantization

▶ **Hamiltonian for interacting system**

\[
H(t) = \int dq \, \psi^\dagger(q) \, h^0(q, t) \, \psi(q) + \frac{1}{2} \int dq \, d\bar{q} \, \psi^\dagger(q) \, \psi^\dagger(\bar{q}) \, h^{\text{int}}(q, \bar{q}) \, \psi(\bar{q}) \, \psi(q)
\]

e.g. \(h^0(x, t) = (p - eA(x, t))^2 + \Phi(x, t) \), \(h^{\text{int}}(x, \bar{x}) = \frac{e^2}{|x-\bar{x}|} \)

▶ **Field operators** \(\psi, \psi^\dagger \) with

- commutation relation for bosons (-),
- anti-commutation for fermions (+)

\[
\begin{align*}
\left[\psi^\dagger(q), \psi^\dagger(q) \right]_\mp &= 0 \\
\left[\psi(q), \psi^\dagger(\bar{q}) \right]_\mp &= \delta(q - \bar{q})
\end{align*}
\]

▶ ⇒ **Theory has “built in” spin statistics**

▶ **Symmetry/anti-symmetry of**

\(N \)–particle states exactly guaranteed
Macroscopic Observables

- **Equilibrium ensemble average.** Density operator

\[\langle O \rangle = \text{Tr}(\hat{\rho}O), \quad \hat{\rho} = \frac{1}{Z} \exp(-\beta H - \mu N) \]

- **Nonequilibrium expectation values.** Switch on perturbing field at \(t = t_0 \)

\[\langle O \rangle \rightarrow \langle O \rangle(t) \], use Heisenberg operators

\[
\langle O_H(t) \rangle = \frac{\text{Tr}(e^{\beta \mu N} U(t_0 - i\beta, t_0) U(t_0, t) O(t) U(t, t_0))}{\text{Tr}(e^{\beta \mu N} U(t_0 - i\beta, t_0))}
\]

- **with evolution operator** \((\hbar = 1)\)

\[U(t, t_0) = \exp \left(-i \int_{t_0}^{t} d\bar{t} H(\bar{t}) \right) \]

\[e^{-\beta H} \equiv U(t_0 - i\beta, t_0) \]

- **Time evolution runs along**

Keldysh-contour \(C \) [L.V. Keldysh, Sov. Phys. JETP, 20, 1018 (1965)]

\[C = \{ t \in \mathbb{C} | \Re t \in [t_0, \infty], \Im t \in [t_0, -\beta] \} \]
Outline

Introduction
 Artificial atoms
 Femtosecond relaxation processes
 Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
 Second quantization
 Definition of Nonequilibrium Green’s functions (NEGFs)
 Equations of motion for the NEGF

Numerical Results. Applications
 Homogenous Coulomb systems. Plasmas
 Dynamics of charged particles in a trap

Conclusions
Definition of Nonequilibrium Green’s functions

- **One-particle Green function**
 \[G(x\tilde{t}, x'\tilde{t}') = \pm \frac{1}{i} \left\langle T_{C} \left(\Psi^{\dagger}(x\tilde{t}) \Psi(x'\tilde{t}') \right) \right\rangle \]

 \(\tilde{t}, \tilde{t}'\) belong to one of 3 branches, \(G\) is \(3 \times 3\) matrix

- **Keldysh Green functions** (matrix elements on \(C\)), denote \(1 \equiv r_1, t_1, s_{z1}\)

- **retarded/advanced functions**
 \[g^{R/A}(1, 1') = \pm \Theta[\pm(t_1 - t'_1)] \left\{ g^> - g^< \right\} \]

- **real branch - imaginary branch components**
 \[g^{R}(1, 1'), g^{A}(1, 1') \]

- **imaginary branch component**: Matsubara (equilibrium) GF
 \[g^{M}(1, 1') \]
Physical content: Time-dependent macroscopic observables

\[\langle \hat{O}(t) \rangle = \int dx \left[o(x', t) \langle \Psi^\dagger (x t) \Psi (x' t) \rangle \right]_{x=x'}, \]

\[= \mp i \int dx \left[o(x', t) g^<(x t, x' t) \right]_{x=x'} \]

Particle density:

\[\langle \hat{n}(x, t) \rangle = \langle \hat{n}(1) \rangle = \mp i g^<(1, 1) \]

Density matrix:

\[F(x_1, x'_1, t) = \mp i g^<(1, 1') \big|_{t_1=t'_1} \]

Current density:

\[\langle \hat{j}(1) \rangle = \mp i \left[\left(\frac{\nabla_1}{2i} - \frac{\nabla_{1'}}{2i} + A(1) \right) g^<(1, 1') \right]_{1'=1} \]

Interaction energy, also follows from 1-particle function, [Baym/Kadanoff]

\[\langle V(t) \rangle = \pm i \frac{V}{4} \int \frac{dp}{(2\pi \hbar)^3} \left\{ (i \partial_t - i \partial_{t'}) - \frac{p^2}{m} \right\} g^<(p, t, t') \big|_{t=t'} \]
Nonequilibrium Green's Functions

Definition and properties of NEGFs

- **Wigner distribution**
 \[f(p, R, T) = \pm i \int d\omega \, g^<(RT, p\omega) \]

- **CoM and relative variables**
 \[T = \frac{(t_1 + t_2)}{2}, \quad t = t_1 - t_2 \]
 \[R = \frac{(x_1 + x_2)}{2}, \quad r = x_1 - x_2 \]

- **Single particle spectrum (Spectral function)**
 \[a(\omega; R, p, T) = i \int dt \, e^{i\omega t} \left[g^> - g^< \right] \left(T + \frac{t}{2}, T - \frac{t}{2}, R, p \right) \]

- **Nonequilibrium Density of states,** \[\rho(\omega) = \text{Tr}(a(\omega; R, p, T)) \]

- **Example: Electrons in harmonic oscillator potential** \[V \]

\[\rho(\omega) \]

\[V(x) \]

\[\text{ideal} \]

\[\text{corr} \]

\[\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4 \]

\[\omega \]

\[\text{Im} \, g^<(t_1, t_2) \]

\[t_2 \]

\[t_1 \]
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
 Equations of motion for the NEGF

Numerical Results. Applications
- Homogeneous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Equations of motion for Keldysh Green function G

- **Heisenberg’s equation of motion:**
 \[i \partial_t \Psi^{(\dagger)}(q, t) = \left[\Psi^{(\dagger)}(q, t), H(t) \right] \]

- **Result:** **Martin-Schwinger Hierarchy** for one, two ... s-particle Green functions
 \[
 (i\partial_t + h(1)) \, G(1, 1') = \delta(1 - 1') \pm i \int_C d2 \, h^{\text{int}}(1 - 2) \, G(12, 12^+) \quad \& \quad \text{adjoint}
 \]

- **Formal decoupling of hierarchy** introducing **selfenergy** Σ
 \[
 \pm i \int_C d2 \, h^{\text{int}}(1 - 2) \, G(12, 12^+) = \int_C d2 \, \Sigma(1, 2) \, G(2, 1')
 \]

- **Conserving approximations**
 \[
 \Sigma[G](1, 2) = \frac{\delta \Phi[G]}{\delta G(2, 1)}
 \]

- **Example for Σ:** 1st and 2nd order diagrams \Rightarrow Hartree-Fock + Second Born.
Keldysh-Kadanoff-Baym equations for matrix components* of G

\[
(i\partial_t - h(1)) g^\triangleright (1, 2) = \left[\Sigma^R \circ g^\triangleright + \Sigma^\triangleright \circ g^A + \Sigma^\downarrow \star g^\uparrow \right] (1, 2)
\]

\[
(-i\partial_t - h(2)) g^\triangleright (1, 2) = \left[g^R \circ \Sigma^\triangleright + g^\triangleright \circ \Sigma^A + g^\downarrow \star \Sigma^\uparrow \right] (1, 2)
\]

\[
(i\partial_t - h(1)) g^\downarrow (1, 2) = \left[\Sigma^R \circ g^\downarrow + \Sigma^\downarrow \star g^M \right] (1, 2)
\]

\[
(-i\partial_t - h(2)) g^\downarrow (1, 2) = \left[g^\downarrow \circ \Sigma^A + g^M \star \Sigma^\uparrow \right] (1, 2)
\]

\[
(-\partial_\tau - h(1)) g^M (1, 2) = i\delta(\tau - \tau') + \left[\Sigma^M \star g^M \right] (1, 2)
\]

\[
(\partial_\tau - h(2)) g^M (1, 2) = i\delta(\tau - \tau') + \left[\Sigma^M \star g^M \right] (1, 2)
\]

* matrix algebra: DuBois, Langreth, ..., Short notation:

\[
[A \circ B](12) = \int_{t_0}^{\infty} d\bar{\tau} d\bar{x} A(1, \bar{x}\bar{\tau}) B(\bar{x}\bar{\tau}, 2), \quad [A \star B](12) = -i \int_0^\beta d\bar{\tau} d\bar{x} A(1, \bar{x}\bar{\tau}) B(\bar{x}\bar{\tau}, 2)
\]

Equilibrium initial state: $g(t_0, t_0)$
- defined by precomputed g^M

Nonequilibrium initial state: $g(t_0, t_0)$
- given by $f(t_0)$, initial pair correlations $c_{12}(t_0)$, additional selfenergy Σ^{IC}

[Ref: Danielewicz, Kremp/Semkat/Bonitz]
Numerical solution of Keldysh-Kadanoff-Baym Equations.

- **Full two-time solutions**: Danielewicz, Schäfer, Köhler/Kwong, Bonitz/Semkat, Haug, Jahnke, van Leeuwen ...

- **Equilibrium initial conditions**
 \[g^< (0, 0) = i g^M (0^+), \]
 \[g^\dagger (0, -i\tau) = i g^M (-\tau), \]
 \[g^\dagger (-i\tau, 0) = i g^M (\tau). \]

- **Numerical scheme**
 1. Choose proper basis set
 2. Solve equilibrium problem: Dyson equation \[\rightarrow g^M (\tau) \]
 3. Time-propagation: Solve Keldysh-Kadanoff-Baym equations
 \[\rightarrow g^< (t, t'), g^\dagger / [g (t, t')] \]
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
- Equations of motion for the NEGF

Numerical Results. Applications
- Homogenous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Sub-femtosecond energy relaxation in dense plasma

Dense hydrogen plasma, \(T = 10,000 K, n = 10^{21} cm^{-3}, k = 0.6/a_B \)

Solution of KB equations **conserves total energy** \(H(t) = T(t) + U(t) = H(0) \)

Initial state uncorrelated (zero correlation energy \(U \))

Correlations build up \(\rightarrow \) increase of \(|U| \)
\(\rightarrow \) Increase of kinetic energy \(T \).

\(T(t) \) and \(U(t) \) saturate at correlation time \(t \approx \tau_{cor} \sim \omega_{pl}^{-1} \)

Preparing system in **over-correlated initial state** leads to cooling.

Solution of KKB equations for short monochromatic excitation, \(U(t) = U_0(t) \cos q_0 r \)

Periodic density fluctuation, with Landau plus correlation damping

Fourier transform yields dynamic structure factor \(S(q, \omega) \)

- Conservation properties of KBE guarantee exact sum rule preservation of plasmon spectrum \(S(q, \omega) \)
- Simple approximations for selfenergy (such as 2nd Born approximation) give high-level correlation effects, including vertex corrections, in \(S \)

[Keong/Bonitz, PRL 84, 1768 (2000)]
Outline

Introduction
- Artificial atoms
- Femtosecond relaxation processes
- Limitations of Boltzmann-type kinetic equations

Basics of Nonequilibrium Green’s Functions
- Second quantization
- Definition of Nonequilibrium Green’s functions (NEGFs)
- Equations of motion for the NEGF

Numerical Results. Applications
- Homogenous Coulomb systems. Plasmas
- Dynamics of charged particles in a trap

Conclusions
Hamiltonian and system parameters. 1D model

\[H = \int dx \, \hat{\Psi}^\dagger(x) \, h^0(x, t) \, \hat{\Psi}(x) + \frac{1}{2} \int dx_1 \, dx_2 \, \hat{\Psi}^\dagger(x_1) \, \hat{\Psi}^\dagger(x_2) \, w(x_1, x_2) \, \hat{\Psi}(x_2) \, \hat{\Psi}(x_1) \]

\[h^0(x, t) = -\frac{\hbar^2 \nabla^2_x}{2m} + \frac{m}{2} \Omega^2 x^2 + V_{\text{ext}}(x, t), \quad w(x_1, x_2) = \lambda \frac{x_0 \hbar \Omega}{\sqrt{(x_1 - x_2)^2 + a^2}} \]

- Dipole field
 \[V_{\text{ext}}(x, t) = -e \, E(t) \, x \]
 \[E(t) = a_0 \, e^{-\frac{(t-t_0)^2}{2t_1}} \, \cos(\omega t) \]
 \(\omega, a_0 \): dimensionless laser frequency and amplitude

- Coupling parameter \(\lambda \), inverse temperature \(\beta \):
 \[\lambda = \frac{e^2}{x_0 \, \hbar \Omega}, \quad x_0^2 = \frac{\hbar}{m \Omega}; \quad \beta = \hbar \Omega / kT \]

- Expand Green functions in oscillator basis, \(g \rightarrow g_{kl} \)
Equilibrium density $n(x)$ and energy distribution $f(\epsilon_k - \mu)$

$N = 6$ fermions (1D trap)
Energy evolution after laser excitation

\[\varepsilon_0 = 0.8 \quad \omega = 1.4 \quad N = 3\]
\[\beta = 3.0 \quad \lambda = 1.0 \]

\[E_{\text{tot}} \quad E_{\text{single}} \quad E_{\text{pot}} \quad E_{\text{kin}} \quad E_{\text{HF}} \]

\[\Delta E \]

\[t \quad [\Omega^{-1}] \]
Occupation number dynamics for off-resonant laser excitation

\[\varepsilon_0 = 2.2 \quad N = 3 \]
\[\omega = 3.0 \quad \beta = 3.0 \]
\[\lambda = 1.2 \]

Pulse [a.u.]

Occup. probability \(n_k(t) \)

time \(t [\Omega^{-1}] \)
Occupation number dynamics for near-resonant laser excitation

\[\mathcal{E}_0 = 0.8 \quad \omega = 1.4 \quad N = 3 \quad \beta = 3.0 \quad \lambda = 1.0 \]

\[n_k(t) \]

\[\text{time } t [\Omega^{-1}] \]
Evolution of Green function of ground state

along diagonal: weak change of ground state population, across: renormalized ground state energy (w.r. to μ)
Evolution of Green function of level 3

along diagonal: reduction of population of level 3
Evolution of Green function of level 5

Build up of population of level 5 (along diagonal) and of correlated spectrum (across)
Conclusions & Outlook

- fs and sub-fs radiation sources ⇒ ultrafast dynamical response of matter
- **Ultrafast dynamics of Coulomb correlations.** Correlation build up ⇒ requires non-Markovian kinetic treatment
- **Real-time nonequilibrium Green functions** (Keldysh/Kadanoff-Baym)
 - selfconsistent non-perturbative treatment of strong fields
 - total energy conservation, exact spin statistics
- **Numerical applications: propagation of NEGF in two-time plain**
 - semiconductors, dense plasmas, electron gas
 - dynamics of trapped electrons, excitons, Bose condensates
 - atoms, molecules in strong fields ⇒ GW approximation
 for larger/complex systems: nonequilibrium combinations with DFT, QMC

- **Text books, reviews:**
 - *Introduction to Computational Methods in Many Body Physics*, M. Bonitz and D. Semkat (eds.), 2006
 - M. Bonitz *Quantum Kinetic Theory*, 1998
- **Announcement:** Interdisciplinary conference *Progress in Nonequilibrium Green Functions IV*, August 17-22 2009, Glasgow, Scotland

- **Web page:** www.theo-physik.uni-kiel.de/~bonitz
Basis representation of Nonequilibrium Green’s Functions.

- With an arbitrary but orthonormal set \(\{ \phi_k(x) \} \):

\[
g^{\geq}(x_t, x'_t) = \sum_{kl} \phi_k^*(x) \phi_l(x) g^{\geq}_{kl}(t, t'), \quad \psi^\dagger(x, t) = \sum_k \phi_k^*(x) \hat{a}_k^\dagger(t)
\]

- Equations of motion (KKBE) → matrix equations of exactly same structure. But spatial degrees of freedom separated.

- Dyson equation for Matsubara (equilibrium) Green’s function.

\[
\left[-\partial_\tau - H^0 \right] \circ g^M(\tau) = \delta(\tau) + \int_0^\beta d\bar{\tau} \Sigma[g^M](\tau - \bar{\tau}) \circ g^M(\bar{\tau})
\]

- Real-time stepping: Kadanoff-Baym equations.

\[
\begin{align*}
i \partial_t g^> (t, t') &= h^{HF+Ext}(t) \circ g^> (t, t') + l^> (t, t') \\
-i \partial_t g^< (t', t) &= g^< (t', t) \circ h^{HF+Ext}(t) + l^< (t', t) \\
i \partial_t g^\dagger (t, -i\tau) &= h^{HF+Ext}(t) \circ g^\dagger (t, -i\tau) + l^\dagger (t, -i\tau) \\
-i \partial_t g^\dagger (-i\tau, t) &= g^\dagger (-i\tau, t) \circ h^{HF+Ext}(t) + l^\dagger (-i\tau, t)
\end{align*}
\]