Superfluidity in small 2d trapped systems of charged bosons

Jens Böning Alexei Filinov Michael Bonitz

Institut für Theoretische Physik und Astrophysik,
Christian-Albrechts-Universität, Kiel

DPG Conference Regensburg 2007
Defining the superfluid fraction in confined systems

- Rotating bucket experiment: Only normalfluid component of a liquid responds to slow rotation of the container walls.
- Quantum mechanical moment of inertia I_{qm} deviates from its classical expectation value $I_{class} \rightarrow \textit{non-classical moment of inertia (NCRI)}$

Definition of superfluid fraction γ_s

$$\gamma_s = 1 - \frac{I_{qm}}{I_{class}}$$

Implications of this definition for very small 2d-systems containing (2...5) charged particles confined in a harmonic trap.
The path-integral Monte-Carlo method

- Thermal average of an observable \hat{A}

$$\langle \hat{A} \rangle = \frac{1}{Z} \int \! dR \int \! dR' \, \rho(R, R'; \beta) \langle R | \hat{A} | R' \rangle$$

- Group property of the density operator

$$\hat{\rho}(\beta) = e^{-\beta \hat{H}} = \left[e^{-\frac{\beta}{M} \hat{H}} \right]^M = [\hat{\rho}(\beta/M)]^M$$

Discrete time path-integral representation of the density matrix

$$\rho(R, R'; \beta) = \int \! dR_1 dR_2 \ldots dR_{M-1}$$

$$\rho(R, R_1; \tau) \rho(R_1, R_2; \tau) \cdots \rho(R_{M-1}, R'; \tau)$$

(time step $\tau = \beta/M$)
The path-integral Monte-Carlo method

- Each quantum particle is considered as a series of positions forming a closed trajectory in space.
- No spin statistics included → Boltzmannons.
- Symmetrized density matrix

\[
\rho^S(R, R'; \beta) = \frac{1}{N!} \sum_{P \in S_N} \rho(R, PR'; \beta)
\]

- Particle exchange corresponds to larger trajectories including several particles.
- Compute path-integrals by sampling over coordinate and permutation space (Monte-Carlo integration).

M. Bonitz, D. Semkat (eds.): *Introduction to Computational Methods in Many Body Physics*, Rinton 2006
System specification

- Reduced Hamiltonian for a system of N equally charged bosons in a harmonic trap

$$\hat{H}_{\text{red}} = \frac{1}{2} \sum_{i=1}^{N} \left(-\nabla_{x_i}^2 + x_i^2 \right) + \lambda \sum_{i<j}^{N} \frac{1}{|x_i - x_j|}$$

- Reduced units

$$x = \frac{r}{l_0}, \quad \epsilon = \frac{E}{\epsilon_0}, \quad t = \frac{k_B T}{\epsilon_0}, \quad \lambda = \frac{l_0}{a_B},$$

- Harmonic oscillator length $l_0 = \sqrt{\hbar/m\omega}$,
- Energy level spacing $\epsilon_0 = \hbar\omega$,
- Effective Bohr radius $a_B = 4\pi \epsilon_b \epsilon_0 \hbar^2 / m q^2$.
Density distribution

Superfluidity in small 2d trapped systems of charged bosons
Superfluid fraction

Estimator for superfluid fraction γ_s: area formula

$$\gamma_s = \frac{2m \langle A_z^2 \rangle}{\beta \lambda I_{\text{class}}},$$

- projected area $A = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=0}^{M-1} \mathbf{r}_k^{(i)} \times \mathbf{r}_{k+1}^{(i)}$,
- classical moment of interia
 $$I_{\text{class}} = \left\langle \sum_{i=1}^{N} \sum_{k=0}^{M-1} m_i \mathbf{r}_k^{(i)} \cdot \mathbf{r}_{k+1}^{(i)} \mathbf{r}_k^{(i)} \cdot \mathbf{r}_{k+1}^{(i)} \right\rangle.$$
Superfluidity vs. localization

Jens Böning, Alexei Filinov, Michael Bonitz

Superfluidity in small 2d trapped systems of charged bosons
Thanks for your attention!
References

M. Bonitz, D. Semkat (eds.): *Introduction to Computational Methods in Many Body Physics*, Rinton 2006

