Analysis of electron density in oxygen rf plasma by 160 GHz microwave interferometry: instabilities and laser photodetachment of negative ions

Institute of Physics
Ernst Moritz Arndt University of Greifswald

C Küllig
K Dittmann and J Meichsner
Outline

1 Motivation
2 Experimental setup
3 Electron densities
4 Instabilities
5 O- densities
6 Summary
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Experimental setup</th>
<th>Electron densities</th>
<th>Instabilities</th>
<th>O⁻ densities</th>
<th>Summary</th>
</tr>
</thead>
</table>

1. **Motivation**

2. Experimental setup

3. Electron densities

4. Instabilities

5. O⁻ densities

6. Summary
Motivation

- negative ions
 - providing information about elementary processes
 - strong influence on reaction kinetics

- standard technique for negative ion diagnostics
 - combination of laser photodetachment and probe diagnostics

- disadvantages of probes
 - strong invasive
 - need various model assumption
 - interaction laser pulse with probe material
Motivation

- negative ions
 - providing information about elementary processes
 - strong influence on reaction kinetics

- standard technique for negative ion diagnostics
 - combination of laser photodetachment and probe diagnostics

- disadvantages of probes
 - strong invasive
 - need various model assumption
 - interaction laser pulse with probe material
Motivation

- goal of project B5
 - investigation of oxygen rf plasmas
 - measurement of O- density
 - combination of laser photodetachment and microwave interferometry

- advantages microwave interferometry
 ⊕ minimal-invasive
 ⊕ applicable in reactive as well as electronegative plasmas
 ⊕ no model assumption
Motivation

- goal of project **B5**
 - investigation of oxygen rf plasmas
 - measurement of O\(^{-}\) density
 - combination of **laser photodetachment** and **microwave interferometry**

- advantages microwave interferometry
 ⊕ minimal-invasive
 ⊕ applicable in reactive as well as electronegative plasmas
 ⊕ no model assumption

- current status
 ✓ establishment of 160GHz microwave interferometry
 ✓ measurement of electron density
 ✓ measurement of instabilities
 ✓ measurement O\(^{-}\) density
Motivation

- goal of project **B5**
 - investigation of oxygen rf plasmas
 - measurement of O\(^-\) density
 - combination of **laser photodetachment** and **microwave interferometry**

- advantages microwave interferometry
 - ⬠ minimal-invasive
 - ⬠ applicable in reactive as well as electronegative plasmas
 - ⬠ no model assumption

- current status
 - ✓ establishment of 160GHz microwave interferometry
 - ✓ measurement of electron density
 - ✓ measurement of instabilities
 - ✓ measurement O\(^-\) density
Motivation

Experimental setup

Electron densities

Instabilities

O- densities

Summary
Microwave interferometry

$$\Delta \Phi = \frac{\pi}{n_c \lambda_{MWI}} \int_{z_1}^{z_2} n_e(z) \, dz$$

- $$\omega_{MWI} \gg \omega_{Pe}$$
- quasi optical description
- optimization between aperture and spatial resolution

- $$f_{MWI} = 160.28 \text{ GHz}$$
- $$\lambda_{MWI} = 1.87 \text{ mm}$$
- $$n_c \approx 3.2 \cdot 10^{22} \text{ m}^{-3}$$
Microwave interferometry

\[\Delta \Phi = \frac{\pi}{n_c \lambda_{MWI}} \int_{z_1}^{z_2} n^e(z) \, dz \]

- \(\omega_{MWI} \gg \omega_{Pe} \)
- quasi optical description
- optimization between aperture and spatial resolution

- \(n^e \sim 1 \cdot 10^{16} \text{ m}^{-3} \)
- \(n^o \sim 0.5 \ldots 0.7 \cdot n^e \)

\(f_{MWI} = 160.28 \text{ GHz} \)
\(\lambda_{MWI} = 1.87 \text{ mm} \)
\(n_c \approx 3.2 \cdot 10^{22} \text{ m}^{-3} \)

\(\Delta \Phi = 0.03^\circ \)
Microwave interferometry

Motivation

- \(\omega_{\text{MWI}} \gg \omega_{\text{Pe}} \)
- Quasi optical description
- Optimization between aperture and spatial resolution

Experimental setup

- \(f_{\text{MWI}} = 160.28 \text{ GHz} \)
- \(\lambda_{\text{MWI}} = 1.87 \text{ mm} \)
- \(n_c \approx 3.2 \times 10^{22} \text{ m}^{-3} \)

Electron densities

- \(n^e \sim 1 \times 10^{16} \text{ m}^{-3} \)
- \(n^e \sim 0.5 \ldots 0.7 \cdot n^e \)

Instabilities

- \(\Delta \Phi \approx 0.03^\circ \)

O^− densities

- \(n^e \sim 0.5 \ldots 0.7 \cdot n^e \)
Gaussian beam propagation theory

- Beam radius w

 $$w = w_0 \cdot \sqrt{1 + \left(\frac{z \lambda_{MWI}}{\pi w_0^2} \right)^2}$$

- $1/e$ decay of the electric field

- Radius of curvature R

 $$R = z + \frac{1}{z} \left(\frac{\pi w_0^2}{\lambda_{MWI}} \right)^2$$
Optical components

- mirrors
- horn antenna

- $340 \times 240 \times 70 \text{mm}^3$
- self-developed calculation and manufacturing

- numerical calculation and manufacturing by IfP University of Stuttgart
Gaussian beam propagation measurement

- measured microwave distribution

\[
\text{fit} = \frac{a}{\sigma_{\text{Gauss}} \cdot (2\cdot\pi)^{1/2}} \cdot \exp \left(-\frac{(x-x_0)^2}{2\cdot\sigma_{\text{Gauss}}^2} \right)
\]

\[
a = 7.62 \text{ V/mm}
\]

\[
x_0 = -7.17 \times 10^{-5} \text{ mm}
\]

\[
\sigma_{\text{Gauss}} = 11.95 \text{ mm}
\]

\[
\sigma_{\text{rmse}} = 0.03
\]

- evaluated distributions for several positions

\[
\hat{w} = w \sqrt{2} \quad (\text{theo.})
\]

\[
\tilde{w} \quad (\text{exp.})
\]
Experimental setup

- asymmetric capacitively coupled rf discharge (cc-rf)
 - gases: Ar, O\textsubscript{2} @ 5 sccm
 - pressure: 10...100 Pa
 - frequency: 13.56 MHz
 - electrode: 10 cm in diameter
 - power: 10...100 W
 - self-bias: −80...−600 V

- microwave interferometer (PLL, heterodyne)
 - \(f_{\text{MWI}} \) = 160.28 GHz
 - \(\lambda_{\text{MWI}} \) = 1.87 mm
 - \(\Delta t \) = 0.2 \(\mu \text{s} \)
 - \(\Delta y \) = 10 mm
 - \(\Delta \Phi \) = 0.016°
 - \(\Delta n_{L}^e \) = 5.3 \(\times 10^{13} \) m-2
Microwave propagation through the device

- gaussian beam propagation
- optical axis 20 mm above electrode
- minimal beam radius 5 mm
- axial spatial resolution of 10 mm

J MEICHSNER et al. Surface and Coating Tech. 98 (1998) 1565-1571
1 Motivation
2 Experimental setup
3 Electron densities
4 Instabilities
5 O- densities
6 Summary
Literature comparison

Argon

- $13 \, \text{Pa}$
 - $n_e \left[\text{m}^{-3} \right]$ vs. $V_{PP} \left[\text{V} \right]$
 - Overzet et al., exp.
 - $x \times 10^{16}$

- $33 \, \text{Pa}$
 - $n_e \left[\text{m}^{-3} \right]$ vs. $V_{PP} \left[\text{V} \right]$
 - Overzet et al., exp.
 - $x \times 10^{16}$

Oxygen

- $13.8 \, \text{Pa}$
 - $n_e \left[\text{m}^{-3} \right]$ vs. $V_{RF/Ampl} \left[\text{V} \right]$
 - Katsch et al., exp.
 - $x \times 10^{16}$

- $10 \, \text{W}$
 - $n_e \left[\text{m}^{-3} \right]$ vs. pressure [Pa]
 - Stoffels (30 sccm), exp. (5 scem)
 - $x \times 10^{15}$

[References]

Time dependence (10 Hz pulsed)

- **Argon**
 - Decay time: 300…1000 µs
 - Influence of rf generator
 - Rise time in ms range

- **Oxygen**
 - Decay time: 500…5000 µs
 - Electron peak in the afterglow
 - 10…100 Pa
 - |self-bias| < 250 V

- Detachment by $O (^3P)$, $O_2 (X^3Σ_g^-)$ and $O_2 (a^1Δ_g)$

 \[
 O^- + O_2 (X^3Σ_g) \rightarrow O_2 (X^3Σ_g^-) + O (^3P) + e \\
 O^- + O_2 (a^1Δ_g) \rightarrow \text{products} + e
 \]
1 Motivation
2 Experimental setup
3 Electron densities
4 Instabilities
5 O- densities
6 Summary
Attachment induced ionization instability

- attachment \leftrightarrow detachment

- properties and parameter
 - start-up time
 $1 \ldots 5 \text{ ms}$
 - frequency
 $100 \text{ Hz} \ldots 3 \text{ kHz}$
 - peak to peak
 $0.2 \ldots 3.5 \cdot 10^{15} \text{ m}^{-2}$

Appearance of instabilities

- Stability map

\[Q = \frac{\partial}{\partial T_e} \left(k_{a}^{O_2} \right) - \frac{\partial}{\partial T_e} \left(k_{iz}^{O_2} \right) \]

- Mechanism

\[Q > 1 \iff \text{instability} \]
\[Q < 1 \iff \text{no instab.} \]

- Investigation by Nighan et al.

- \[e + O_2 \rightarrow O + O^- \]
- \[e + O_2 \rightarrow O_2^+ + 2e \]

> 60 Pa dominated by instabilities

< 60 Pa stability islands
Appearance of instabilities

- stability map

<table>
<thead>
<tr>
<th>Pressure [Pa]</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

> 60 Pa dominated by instabilities
< 60 Pa stability islands

- mechanism

- investigation by Nighan et al.

\[
Q = \frac{\partial}{\partial T_e} \left(k^{O_2}_{a} \right) = \begin{cases}
> 1 \iff \text{instability} \\
< 1 \iff \text{no instab.}
\end{cases}
\]

\[
e + O_2 \xrightarrow{k^{O_2}_{a}} O + O^- \\
e + O_2 \xrightarrow{k^{O_2}_{iz}} O_2^+ + 2e
\]

① Motivation
② Experimental setup
③ Electron densities
④ Instabilities
⑤ O- densities
⑥ Summary
Experimental setup

- Nd:YAG laser
 - wavelength: 512 nm
 - photon energy: 2.3 eV
 - puls energy: 400 mJ
 - repetition rate: 10 Hz
 - pulse width: 7 ns
 - diameter: 13 mm
 - overlap angle: 12.6°
 - overlap length: ~15 cm
 - axial distance: 20 mm

Other components:
- Elliptical mirror
- Horn antenna
- Microwave interferometer
- Phase-shifter
- Oscilloscope
- PC
- BNC
- GIB
Experimental setup

Nd:YAG laser

- **wavelength**: 512 nm
- **diameter**: 13 mm
- **photon energy**: 2.3 eV
- **overlap angle**: 12.6°
- **puls energy**: 400 mJ
- **overlap length**: ~ 15 cm
- **repetition rate**: 10 Hz
- **axial distance**: 20 mm
- **pulse width**: 7 ns
Detachment signal

\[\text{O}^- + h\nu \rightarrow \text{O} + e \]

- measured with microwave interferometer
- **first** time in low pressure oxygen cc-rf plasma
- averaged 5000 times
- electron peak \triangle negative atomic oxygen ion density
Test of saturation

- Detachment ratio - laser energy variation

\[
\frac{\Delta n_e}{n_0^{O^-}} = \left[1 - \exp \left(-\frac{\sigma}{h \nu A} \right) \right]
\]

- \(\sigma = 6.4 \cdot 10^{-22} \text{ m}^2 \)
- Measurements performed at 350 mJ

Pressure dependence of detachment signal @40W

<table>
<thead>
<tr>
<th>10 Pa</th>
<th>20 Pa</th>
<th>30 Pa</th>
<th>60 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{L}^O [10^{14} m$^{-2}$]</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>τ [\mu s]</td>
<td>75</td>
<td>37</td>
<td>3.2</td>
</tr>
<tr>
<td>n_{L}^e [10^{14} m$^{-2}$]</td>
<td>40</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>$\alpha = \frac{n_{L}^O}{n_{L}^e}$ [1]</td>
<td>0.05</td>
<td>1</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- Significant change in decay time constant and electronegativity
- Transition between two different plasma modes
- In each mode the decay time constant decreases with rising pressure as expected
Power dependence of detachment signal @30 Pa

- all values show step-like behaviour
- the boundary value is 50 W
- this changes are may be combined with the transition from \(\alpha \)-mode to \(\gamma \)-mode
- \(\gamma \)-mode characterized by lower „electron temperature“ at much higher electron density
(a) excitation due to electron heating during the sheath expansion phase (I)
- α-mode discharge

(b) additional excitation pattern (II) due to secondary electrons
- γ-mode of discharge
0D-attachment-detachment model for low decay time constant

(i) Assumptions

- constant density of other species e.g. O_2^+, $O_2 (X^3Σ_g^−)$, $O_2 (a^1Δ_g)$ and $O (3P)$
- $n^e + n^− = n^{+0} \equiv \text{const}$
- neglecting detachment by $O (3P)$

(ii) Considered processes

\[
\begin{align*}
 &e + O_2 (X^3Σ_g^−) \xrightarrow{k_a^{O2}} O^- + O (3P) \quad \text{attachment} \\
 &e + O_2 (a^1Δ_g) \xrightarrow{k_a^{Δ}} O^- + O (3P) \\
 &O^- + O_2 (X^3Σ_g^−) \xrightarrow{k_d^{O2}} O_2 (X^3Σ_g^−) + O (3P) + e \quad \text{detachment} \\
 &O^- + O_2 (a^1Δ_g) \xrightarrow{k_d^{Δ}} O_3 (\text{or products}) + e
\end{align*}
\]

(iii) Rate equation

\[
\frac{dn^e}{dt} = -\left(k_a^{O2} (T_e) n^{O2} + k_a^{Δ} (T_e) n^{Δ}\right)n^e + \left(k_d^{O2} n^{O2} + k_d^{Δ} n^{Δ}\right)n^- = -\tilde{K}_a n^e + \tilde{K}_d n^-
\]

0D-attachment-detachment model for low decay time constant

(iv) Solution

\[
\frac{\tilde{K}_a}{\tilde{K}_d} = \frac{n^{-0}}{n^{e0}} = \alpha \\
\Delta n^e(t) = n^{-0} \cdot \exp \left[-\left(\tilde{K}_a + \tilde{K}_d \right) \cdot \frac{t}{1/\tau} \right]
\]

\[
\tilde{K}_a = \frac{1}{\tau} \cdot \frac{1}{1 + \frac{1}{\alpha}} \\
\tilde{K}_d = \frac{1}{\tau} \cdot \frac{1}{1 + \alpha}
\]

(v) Estimated densities

- neglecting detachment with \(\text{O}_2 \left(X^3\Sigma_g^- \right) \)
 reveals density of \(\text{O}_2 \left(a^1\Delta_g \right) \) (\(\hat{n}_A \)) and \(\text{O}_2 \left(X^3\Sigma_g^- \right) \) (\(\hat{n}_O^2 \))

\[\hat{n}_A = \frac{\tilde{K}_d}{k_d} \]

\(\hat{n}_O^2 \) remaining part of the density

0D-attachment-detachment model for low decay time constant

(vi) Estimated attachment rate coefficient k_a

- Literature attachment rate coefficient
 \[k_{a, O_2} = 8.8 \times 10^{-17} \exp \left(\frac{-4.4}{T_e} \right) \]

- $k_{a, A} = 2.28 \times 10^{-16} \exp \left(\frac{-2.29}{T_e} \right)$

\[\tilde{K}_a = k_{a, O_2}^O (T_e) n^{O_2} + k_{a, A}^A (T_e) n^{A} \]

- Density taken from (v)
- Decreasing „electron temperature“ from 6…2 eV
- High „electron temperature“ hint to α-mode
- Important to consider $O_2 (a^1 \Delta_g)$
1 Motivation
2 Experimental setup
3 Electron densities
4 Instabilities
5 O\(^{-}\) densities
6 Summary
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs,
 \[\Delta \Phi = 0.016^{\circ}, \Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs, \(\Delta \Phi = 0.016^\circ, \Delta n_e = 5.3 \cdot 10^{13} \text{ m}^{-2} \)
 - systematic analysis of electron densities \(n_e L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
 - electron peaks in the afterglow of the discharge
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \cdot 10^{13} \, \text{m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \, \text{m}^{-2} \)
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs, \[\Delta \Phi = 0.016° \], \[\Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \[n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \]
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability
- laser photodetachment and microwave interferometry
 - determination of O\(^-\) density
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 μs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability
- laser photodetachment and microwave interferometry
 - determination of \(O^- \) density
 - transition from \(\alpha \)- to \(\gamma \)-mode
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability
- laser photodetachment and microwave interferometry
 - determination of \(O^- \) density
 - transition from \(\alpha\)- to \(\gamma\)-mode
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 μs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities
 \[n_e \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \]
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability

- laser photodetachment and microwave interferometry
 - determination of \(O^- \) density
 - transition from \(\alpha \)- to \(\gamma \)-mode
 - 0D-attachment-detachment model for low decay time constant
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 μs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \[n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \]
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability

- laser photodetachment and microwave interferometry
 - determination of O\(^-\) density
 - transition from \(\alpha\)- to \(\gamma\)-mode
 - 0D-attachment-detachment model for low decay time constant
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \cdot 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability

- laser photodetachment and microwave interferometry
 - determination of \(O^- \) density
 - transition from \(\alpha \)- to \(\gamma \)-mode
 - 0D-attachment-detachment model for low decay time constant

Thank you for your attention
Summary

- applied microwave interferometry successfully
 - resolution 10 cm, 0.2 µs,
 \[\Delta \Phi = 0.016^\circ, \Delta n_e^L = 5.3 \times 10^{13} \text{ m}^{-2} \]
 - systematic analysis of electron densities \(n_e^L \sim \cdot 10^{15} \ldots 5 \cdot 10^{16} \text{ m}^{-2} \)
 - electron peaks in the afterglow of the discharge
 - attachment induced ionization instability

- laser photodetachment and microwave interferometry
 - determination of \(O^- \) density
 - transition from \(\alpha^- \) to \(\gamma \)-mode
 - 0D-attachment-detachment model for low decay time constant

Thank you for your attention